DOI: 10.19830/j.upi.2020.31
Implications of Measuring Resilience of Urban Street Networks: Comparative Study of Five Global Cities

Yan Wentao, Lu Jianglin, Li Zihao, Shen Yao

Keywords: Street Network; Global Efficiency; Resilience Measurement; Spatial Implications of Resilience; Scenario Simulation; Comparative Study; Global City

Abstract:

 The concept of resilient city provides a new perspective to deal with uncertain disturbances or shocks. As the foundation of urban spatial structure, street network is significant for building a resilient city. In this paper, a quantitative model is established for measuring the resilience level of urban street network based on the global efficiency of street network. It finds that there are differences in the resilience levels of the urban street networks in the five global cities included in this study. The street network of Shanghai has the highest resilient level under two types of disturbance scenarios; the street network of London has the lowest level of resilience under random disturbance; the resilient level of Tokyo city street network is the lowest under the perturbation of sequence scenarios. The result shows that the grid type urban street network with moderate network density, orderly hierarchical structure and multi-level connections has a high level of resilience when facing the two kinds of disturbances. This research can provide theoretical support for building a space-efficient and dynamically adaptable urban street network structures.


Funds:

Brief Info of Author(s):

References:
  • [1] 汪光焘. 城市:40 年回顾与新时代愿景[J]. 城市规划学刊, 2018(6): 7-19. 

    2] AHERN J. From fail-safe to safe-to-fail: sustainability and resilience in the new urban world[J]. Landscape and urban planning, 2011, 100(4): 341-343. 

    [3] BERKES F. Understanding uncertainty and reducing vulnerability: lessons from resilience thinking[J]. Natural hazards, 2007, 41(2): 283-295.

    [4] GODSCHALK D R, BEATLEY T, BERKE P, et al. Natural hazard mitigation: recasting disaster policy and planning[M]. Washington, DC: Island Press, 1999. 

    [5] LHOMME S, SERRE D, DIAB Y, et al. Analyzing resilience of urban networks: a preliminary step towards more flood resilient cities[J]. Natural hazards and earth system science, 2013, 13(2): 221-230. 

    [6] LU P, STEAD D. Understanding the notion of resilience in spatial planning: a case study of Rotterdam, the Netherlands[J]. Cities, 2013, 35:200-212. 

    [7] MILETI D S. Disasters by design: a reassessment of natural hazards in the United States[M]. Washington, DC: Joseph Henry Press, 1999. 

    [8] JHA A K, MINER T W, STANTON-GEDDES Z. Building urban resilience: principles, tools, and practice[M]. Washington, DC: World Bank Publications, 2013. 

    [9] LUEDERITZ C, LANG D J, WEHRDEN H V. A systematic review of guiding principles for sustainable urban neighborhood development[J]. Landscape and urban planning, 2013, 118(8): 40-52. 

    [10] 颜文涛 , 卢江林 . 乡村社区复兴的两种模式 :韧性视角下的启示与思 考 [J]. 国际城市规划 , 2017(4): 22-28. DOI: 10.22217/upi.2017.127. 

    [11] FLEISCHHAUER M. The role of spatial planning in strengthening urban resilience[M] // PASMAN H J, KIRILLOV I A. Resilience of cities to terrorist and other threats: learning from 9/11 and further research issues, 2008: 273-298. 

    [12] JABAREEN Y. Planning the resilient city: concepts and strategies for coping with climate change and environmental risk[J]. Cities, 2013, 31: 220-229. 

    [13] 李亚 , 翟国方 . 我国城市灾害韧性评估及其提升策略研究 [J]. 规划师 , 2017(8): 5-11. 

    [14] 李亚, 翟国方, 顾福妹. 城市基础设施韧性的定量评估方法研究综述[J]. 城市发展研究 , 2016(6): 113-122. 

    [15] SHARIFI A. Resilient urban forms: a review of literature on streets and street networks[J]. Building and environment, 2019, 147: 171-187. 

    [16] SHARIFI A. Resilient urban forms: a macro-scale analysis[J]. Cities, 2019, 85: 1-14. 

    [17] SHARIFI A. Urban form resilience: a meso-scale analysis[J]. Cities 2019, 93: 238-252. 

    [18] LEN J, MARCH A. Urban morphology as a tool for supporting tsunami rapid resilience: a case study of Talcahuano, Chile [J]. Habitat international, 2014, 43: 250-262. 

    [19] ALEXANDER C. A city is not a tree[J]. Architectural forum, 1965, 122(1/2): 58-62. 

    [20] BATTY M, LONGLEY P. Fractal cities: a geometry of form and function[M]. New York: Academic Press, 1994. 

    [21] SALINGAROS N, BILSEN A V. Principles of urban structure[M]. Amsterdam: Techne Press, 2005. 

    [22] BATTY M. Building a science of cities [J]. Cities, 2012, 29: 9-16. 

    [23] SOUTHWORTH M, BEN-JOSEPH E. Street and shaping of towns and cities[M]. Mcgraw-hill Press, 1996. 

    [24] ALBERT R, JEONG H, BARABASI A. Error and attack tolerance of complex networks[J]. Nature, 2000, 406(27): 378-381. 

    [25] CAVALLARO M, ASPRONE D, LATORA V, et al. Assessment of urban ecosystem resilience through hybrid social-physical complex networks[J]. Computer-aided civil and infrastructure engineering, 2014, 29(8): 608-625. 

    [26] VESPIGNANI A. The fragility of interdependency[J]. Nature, 2010, 464(15): 984-985. 

    [27] HOLLING C S. Resilience and stability of ecological systems[J]. Annual review of ecological systems, 1973, 4(4): 1-23. 

    [28] GUNDERSON L H, HOLLING C S. Panarchy-understanding transformations in human and natural systems[M]. Washington, DC: Island Press, 2002. 

    [29] WALKER B, SALT D. Resilience thinking: sustaining ecosystems and people in a changing world[M]. Washington, DC: Island Press, 2006. 

    [30] CARPENTER S R, WALLKER B, ANDERIES J M, et al. From metaphor to measurement: resilience of what to what?[J]. Ecosystems, 2001, 4(8): 765-781. 

    [31] 杨敏行 , 黄波 , 崔翀 , 等 . 基于韧性城市理论的灾害防治研究回顾与展望 [J]. 城市规划学刊 , 2016, 227(1): 48-55. 

    [32] ADGER W N. Social and ecological resilience: are they related?[J]. Progress in human geography, 2000, 24(3): 347-364. 

    [33] BERKES F, COLDING J, FOLKE C, et al. Navigating social-ecological systems: building resilience for complexity and change[M]. Cambridge, the UK: Cambridge University Press, 2003.

    [34] LIAO K H. A theory on urban resilience to floods: a basis for alternative planning practices[J]. Ecology and society, 2012, 17(4): 388-395. 

    [35] MIGUEZ M G, VEROL A P. A catchment scale integrated flood resilience index to support decision making in urban flood control design[J]. Environment and planning b, 2017, 44(5): 925-946. 

    [36] RESTEMEYER B, WOLTJER J, BRINK M. A strategy-based framework for assessing the flood resilience of cities – a Hamburg case study[J]. Planning theory & practice, 2015, 16(1): 45-62. 

    [37] MANYENA S B. The concept of resilience revisited[J]. Disasters, 2006, 30(4): 433-450. 

    [38] FOLKE C, CARPENTER S R, WALKER B, et al. Resilience thinking: integrating resilience, adaptability and transformability[J]. Ecology and society, 2010,15(4): 20. 

    [39] Resilience Alliance. Assessing resilience in social- ecological systems: a workbook for scientists[R/OL]. (2007)[2015-10-23]. https://library. uniteddiversity.coop/Transition_Relocalisation_Resilience/resilience_ workbook_for_scientists.pdf. 

    [40] DAVOUDI S. Resilience: a bridging concept or a dead end?[J]. Planning theory & practice, 2012, 13(2): 299-333. 

    [41] FOLKE C. Resilience: the emergence of a perspective for social-ecological systems analyses [J]. Global environmental change, 2006(16): 253-267. 

    [42] HOLLING C S. Engineering resilience versus ecological resilience[M] // SCHULZE P C, ed. Engineering within ecological constraints. Washington, DC: National Academy Press, 1996: 31-44. 

    [43] KLEIN R J T, NICHOLLS R J, THOMALLA F. Resilience to natural hazards: how useful is this concept?[J]. Environmental hazards, 2003, 5(1): 3545. 

    [44] MEEROW S, NEWELL J P, STULTS M. Defining urban resilience: a review[J]. Landscape and urban planning, 2016, 147: 38-49. 

    [45] 邵亦文 , 徐江 . 城市韧性 :基于国际文献综述的概念解析 [J]. 国际城市 规划 , 2015, 30(2): 48-54. 

    [46] CIMELLARO G P, REINHORN A M, BRUNEAU M. Framework for analytical quantification of disaster resilience[J]. Engineering structures, 2010, 32(11): 3639-3649. 

    [47] THOMALLA F, DOWNING T, SPANGER-SIEGFRIED E, et al. Reducing hazard vulnerability: Towards a common approach between disaster risk reduction and climate adaptation[J]. Disasters, 2006, 30(1): 39-48. 

    [48] DJALANTE R, TJOMALLA F. Community resilience to natural hazards and climate change impacts: a review of definitions and operational frameworks[J]. Asian journal of environment and disaster management, 2011, 3(3): 339-355. 

    [49] 彭翀 , 郭祖源 , 彭仲仁 . 国外社区韧性的理论与实践进展 [J]. 国际城市 规划 , 2017, 32(4): 60-66. DOI :10.22217/upi.2016.127. 

    [50] BRUNEAU M, CHANG S E, EGUCHI R T, et al. A framework to quantitatively assess and enhance the seismic resilience of communities[J]. Earthquake spectra, 2003, 19(4): 733-752. 

    [51] BRUNEAU M, REINHORN A. Exploring the concept of seismic resilience for acute care facilities[J]. Earthquake spectra, 2007, 23(1): 41-62. 

    [52] CUTTER S L, BARNES L, BERRY M, et al. A place-based model for understanding community resilience to natural disasters[J]. Global environmental change, 2008, 18(4): 598-606. 

    [53] HENRY D, RAMIREZ-MARQUEZ J E. Generic metrics and quantitative approaches for system resilience as a function of time[J].Reliability engineering & system safety, 2012, 99: 114-122. 

    [54] REED D A, KAPUR K C, CHRISTIE R D. Methodology for assessing the resilience of networked infrastructure[J]. IEEE systems journal, 2009(3): 174

    180. 

    [55] OUYANG M, DUEAS-OSORIO L, MIN X. A three-stage resilience analysis framework for urban infrastructure systems[J]. Structural safety, 2012, 36/37: 23-31. 

    [56] ZHANG X, MILLER-HOOKS E, DENNY K. Assessing the role of network topology in transportation network resilience[J]. Journal of transport geography, 2015, 46: 35-45. 

    [57] NEWMAN M E J. Power laws, pareto distributions, and zipf’s law[J]. Contemporary physics, 2005, 46(5): 323-351. 

    [58] NAJJAR W, GAUDIOT J L. Network resilience: a measure of network fault tolerance[J]. IEEE transactions on computers, 1990, 39(2): 174-181. 

    [59] ROSENKRANTZ D J, GOEL S, RAVI S S, et al. Resilience metrics for service- oriented networks: a service allocation approach[J]. IEEE transactions on services computing, 2009, 2(3): 183-196. 

    [60] PORTA S, CRUCITTI P, LATORA V. The network analysis of urban streets: a primal approach[J]. Environment and planning b: planning and design, 2006, 33(5): 705-725. 

    [61] PORTA S, CRUCITTI P, LATORA V. The network analysis of urban streets: a dual approach[J]. Physiea a: statistical mechanics and its applications, 2006, 369(2): 853-866. 

    [62] WANG J. Resilience of self-organised and top-down planned cities – a case study on London and Beijing street networks[J]. PloS one, 2015, 10(12): e0141736. 

    [63] LATORA V, MARCHIORI M. Efficient behavior of small-world networks[J]. Physical review letters, 2001, 87(19): 198701. 

    [64] LI D, LI G, KOSMIDIS K, et al. Percolation of spatially constraint networks[J]. EPL (Europhysics letters),2011, 93(6): 68004. 

    [65] LI D, FU B, WANG Y, et al. Percolation transition in dynamical traffic network with evolving critical bottlenecks[J]. Proceedings of the National Academy of Sciences. 2015, 112(3): 669-672. 

    [66] PAOLO M A, MOLINERO C. Robustness and closeness centrality for selforganized and planned cities[J]. European physical journal b, 2016, 89(53): 1-8. 

    [67] FREEMAN L C. A set of measures of centrality based on betweenness[J]. Sociometry, 1977, 40(1): 35-41. 

    [68] FREEMAN L C, BORGATTI S P, WHITE D R. Centrality in valued graphs: a measure of betweenness based on network[J]. Social networks, 1991(3): 141154. 

    [69] NEWMAN M E J, GIRVAN M. Finding and evaluating community structure in networks[J]. Physical review e: statistical, nonlinear, and soft matter physics, 2004, 69(2): 026113. 

    [70] KOSTOF S. The city shaped: urban patterns and meanings through history[M]. Bulfinch Press, 1993. 

    [71] MARSHALL S. Streets and patterns[M]. Routledge Press, 2004. 

    [72] SALAT S, LABBE F, NOWACKI C. Cities and forms on sustainable urbanism[M]. Paris: Herman, 2011. 

    [73] FELICIOTT A, ROMICE O, PORTA S. Design for change: five proxies for resilience in the urban form[J]. Open house international, 2016, 41(4): 23-30. 

    [74] SALAT S. A systemic approach of urban resilience: power laws and urban growth patterns[J]. International journal of urban sustainable development, 2017, 9(2): 107-135. [75] 沈清基. 城市空间结构生态化基本原理研究[J]. 城市人口·资源与环境, 2004, 14(6): 6-11. 

    [76] 颜文涛 , 王正 , 韩贵锋 , 等 . 低碳生态城规划指标及实施途径 [J]. 城市 规划学刊 , 2011, 295(3): 39-50. 

    [77] 颜文涛 , 萧敬豪 , 胡海 , 等 . 城市空间结构的环境绩效:进展与思考 [J]. 城市规划学刊 , 2012, 203(5): 50-58. 

    [78] SOL R V, MONTOYA J M. Complexity and fragility in ecological networks[J]. Proceedings of the royal society: biological sciences, 2001, 268: 2039-2045. 

    [79] JORDIN F, SCHEURING I. Searching for keystones in ecological networks[J]. Oikos, 2002, 99(3): 607-612. 

    [80] FATH B D, GRANT W E. Ecosystems as evolutionary complex systems: network analysis of fitness models[J]. Environmental modelling & software, 2007, 22(5): 693-700. 

    [81] MELIN C J, BASCOMPTE J, JORDANO P, et al. Diversity in a complex ecological network with two interaction types[J]. Oikos, 2009, 118(1): 122130. 

    [82] POISOT T, GRAVEL D. When is an ecological network complex? connectance drives degree distribution and emerging network properties[J]. Peerj, 2014(2): 251. 

    [83] BASCOMPTE J, STOUFFER D B. The assembly and disassembly of ecological networks[J]. Philosophical transactions of the royal society b, 2009, 364: 1781-1787.


TOP 10