2019年第1期   DOI:10.22217/upi.2018.514
深度学习在城市感知的应用可能 —— 基于卷积神经网络的图像判别分析
The Latent Application of Deep Learning in Urban Perception: Image Discrimination Analysis by Convolutional Neural Network

何宛余 李春 聂广洋 杨良崧 王楚裕

He Wanyu, Li Chun, Nie Guangyang, Jackie Yong Leong Shong, Wang Chuyu


Keywords:Artificial Intelligence; Deep Learning; Convolutional Neural Network; Image Discrimination; Urban Perception




Nowadays, machine learning attracts intense attention from artificial intelligence researches and extends a variety of applications such as image discrimination, voice assistant and smart translator. In particular, image discrimination has been extensively studied and practiced in various industries, including urban field. Thanks to Convolutional Neural Network (CNN) based on Deep Learning (DL) that has made remarkable achievements in computer vision, it is more efficient to train computer to discriminate architecture styles, urban texture and other urban features. Based on image discrimination by DL, this research focuses on exploring the applications of CNN in the field of urban perception. In consideration of limits and errors brought by training customized image discrimination model with the existing open source labeled image dataset, this paper explores a whole process from collecting data, self-constructing training dataset to building a customized image discrimination model which satisfies specific requirements. The latent application of DL in urban scale are discussed through three experiment cases: the cityscape analysis, urban problem detection and urban pattern evaluation.








  • [1] 尼格尔· 泰勒. 1945 年后西方城市规划理论的流变[M]. 李白玉, 陈贞, 译. 北京: 中国建筑工业出版社, 2006.

    [2] LUSK E, BOYLE J, WOS L, et al. Automated reasoning: introductions and applications[M]. New Jersey: Prentice Hall, 1984: 4.

    [3] FLASI?SKI M. Introduction to artificial intelligence[M]. Switzerland: Springer Nature, 2016: 5.

    [4] 朱玮, 王德. 大尺度城市模型与城市规划[J]. 城市规划, 2003, 27(5): 47-54.

    [5] 陈苏雅. 5 月1 日起深圳交警试点“刷脸”执法( 附电子警察位置)[N/OL]. (2018-04-19)[2018-10-22]. http://www.sznews.com/news/content/2018-04/19/content_18921886.htm.

    [6] ARIETTA S M, EFROS A A, RAMAMOORTHI R, et al. City forensics: using visual elements to predict non-visual city attributes[J]. IEEE Transactions on Visualization and Computer Graphics, 2014, 20(12): 2624-2633.

    [7] COURVILLE A, GOODFELLOW I, BENGIO Y. Deep learning[M]. Cambridge: MIT Press, 2016: 9.

    [8] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C] // PEREIRA F, BURGES C J C, BOTTOU L, et al. Proceedings of the 25th International Conference on Neural Information Processing Systems – Volume 1. New York: Curran Associates Inc., 2012: 1097-1105.

    [9] GILL J K. Automatic log analysis using deep learning and AI for microservices[EB/OL]. (2017-07-21)[2018-10-20]. https://www.xenonstack.com/blog/data-science/log-analytics-deep-machine-learning-ai/.

    [10] NG A. Machine learning yearning (draft version)[M/OL]. (2018-09-29)[2018-09-28]. https://www.deeplearning.ai/machine-learning-yearning/.

    [11] PATEL S, PINGEL J. Introduction to deep learning: what are convolutional neural networks?[EB/OL]. (2017-04-24)[2018-09-28]. https://www.mathworks.com/videos/introduction-to-deep-learning-what-areconvolutional-neural-networks--1489512765771.html.

    [12] NAIK N, KOMINERS S D, RASKAR R, et al. Computer vision uncovers urban change predictors of physical urban change[J]. Proceedings of the National Academy of Sciences, 2017, 114(29): 7571-7576.

    [13] UBA B K. Land use and land cover classification using deep learning techniques[D/OL]. Arizona: Arizona State University, 2016. [2018-11-20]. https://repository.asu.edu/attachments/170740/content/Uba_asu_0010N_15901.pdf.

    [14] PAPADOMANOLAKI M, VAKALOPOULOU M, ZAGORUYKO S, et al. Benchmarking deep learning frameworks for the classification of very high resolution satellite multispectral data[C]. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences Volume III-7. G?ttingen: Copernicus Publications, 2016: 83–88.

    [15] PENATTI O A B, NOGUEIRA K, SANTOS J A D. Do deep features generalize from everyday objects to remote sensing and aerial scenes domains?[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops. New York: Curran Associates Inc., 2015: 44-51.

    [16] ROMERO A, GATTA C, CAMPS-VALLS G. Unsupervised deep feature extraction for remote sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(3): 1349-1362.

    [17] SHEN Q, ZENG W, YE Y, et al. StreetVizor: visual exploration of human-scale urban forms based on street views[J]. IEEE Transactions on Visualization and Computer Graphics, 2018, 24(1): 1004-1013.

    [18] YE Y, RICHARDS D, LU Y, et al. Measuring daily accessed street greenery: a human-scale approach for informing better urban planning practices[J]. Landscape and Urban Planning, 2018. https://doi.org/10.1016/j.landurbplan.2018.08.028.

    [19] DUBEY A, NAIK N, PARIKH D, et al. Deep learning the city: quantifying urban perception at a global scale[C]. LEIBE B, MATAS J, SEBE N, et al, eds. Computer Vision – ECCV 2016. Cham: Springer, 2016: 196-212.

    [20] NADAI M D, VIERIU R L, ZEN G, et al. Are safer looking neighborhoods more lively? a multimodal investigation into urban life[C] // HANJALIC A, SNOEK C. Proceedings of the ACM Multimedia Conference 2016. New York: ACM, 2016: 1127-1135.

    [21] SERESINHE C I, PREIS T, MOAT H S. Using deep learning to quantify the beauty of outdoor places[J/OL]. London: Royal Society Open Science, 2017, 4(7). (2017-07-01)[2019-09-28]. https://royalsocietypublishing.org/doi/full/10.1098/rsos.170170.

    [22] DOERSCH C, SINGH S, GUPTA A, et al. What makes Paris look like Paris?[J]. Communications. New York: ACM, 2015, 58(12): 103–110.

    [23] SHALUNTS G, HAXHIMUSA Y, SABLATNIG R. Architectural style classification of building facade windows[C] // BEBIS G, BOYLE R, PARVIN B, et al. ISVC 2011: Advances in Visual Computing. Berlin: Springer, 2011: 288.

    [24] ESLAMI S M A, REZENDE D J, BESSE F, et al. Neural scene representation and rendering[J]. Science, 2018, 360(6394): 1204–1210.

    [25] SCOTT G J, ENGLAND M R, STARMS W A, et al. Training deep convolutional neural networks for land-cover classification of high-resolution imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(4): 549-553.

    [26] JEAN N, BURKE M, XIE M, et al. Combining satellite imagery and machine learning to predict poverty[J]. Science, 2016, 353(6301): 790-794.

《国际城市规划》编辑部    北京市车公庄西路10号东楼E305/320    100037
邮箱:upi@vip.163.com  电话:010-58323806  传真:010-58323825
京ICP备13011701号-6  京公网安备11010802014223