点击排行
 
正文
全文下载次数:0
2019年第3期   DOI:10.22217/upi.2019.140
基于H/T 断裂点法的POI自然城市规模等级测度
Classification of POI Natural Cities Scale and Hierarchy Based on Head/Tail Breaks

刘凌波 彭正洪 吴昊

Liu Lingbo, Peng Zhenghong, Wu Hao

关键词:大数据;自然城市;长尾法则;位序—规模;H/T 断裂点法;不规则三角网格

Keywords:Big Data; Natural Cities; Long Tail Rule; Rank-Size; Head/Tail Breaks; TIN

摘要:

城市规模等级及边界研究一直以来都是城市研究的重要内容,但仅凭传统的人口与经济规模统计数据通常无法精准界定,越来越多的研究开始引入灯光遥感、手机信令、道路交叉口以及基于位置的社会网络(LBSN)等新数据界定城市边界,以自下而上的方式测度城市规模,可仍然存在数据表征性不强和缺乏分级标准两个问题,因此有学者通过H/T断裂点法来进行城市规模等级划分及边界界定。研究以反映丰富经济活动的兴趣点(POI)为数据,构建不规则三角网格(TIN),引入H/T 断裂点法分级方法,对中国大陆城市的自然城市规模进行了测度和等级划分。通过与传统社会经济数据、开放数据的对比,以POITIN城市刻画方法和H/T 断裂点法生成的自然城市边界反映了相对真实的聚居规模,遵循了位序—规模的齐普夫(Zipf)分布规律,为具有长尾序列和分形结构的城市规模自然分级提供了科学方法。研究验证了该方法在自然城市规模测度和分级中具备推广性,在精度及真实数据获取性方面有较大优势,对城市边界划定和规模分级有重要的研究和现实意义。


Abstract:

Scale hierarchy and boundary delimitation play important roles in urban research. Traditional statistic data such as population and economic scale cannot precisely define the real status, alternatively, new data such as light remote sensing, mobile phone signaling, road intersection and location-based social network (LBSN) have been introduced recently by more and more studies, intending to delimit the built up area boundary and measure the size and scale of the city with bottom-to-up approach. However, there are still two problems: lacking dividing standards and representing feature, therefore the H/T breaks point method is provided to classify scale and define boundary for cities. Based on to make a triangular irregular network (TIN) generated by point of interest (POI) data which represents various economic activities, the H/T breaks method is applied classifying the natural city scale in mainland China. The results show that the natural city boundary based on POI reflects the relative scale and density of human settlements, the H/T breaks point classification follows the Zipf’s law in rank-size method, offers a more scientific classifying method for naturally grouping of city scale according to the long tail rule and fractal structure of natural cites. The method has promotional value on urban scale measuring and classifying, with the advantage of precision and real data acquisition.


版权信息:
基金项目:国家科技支撑计划课题(2015BAJ05B02),中国博士后科学基金面上项目(2016M600609),教育部人文社会科学研究青年基金(19YJCZH187)
作者简介:

刘凌波,博士,武汉大学城市设计学院,讲师。lingbo.liu@whu.edu.cn

彭正洪,武汉大学城市设计学院,教授,博导,副院长。pengzhenghong@whu.edu.cn

吴昊(通信作者),博士,武汉大学城市设计学院,讲师。wh79@whu.edu.cn


译者简介:

参考文献:
  • [1] FRAGKIAS M, SETO K C. Evolving rank-size distributions of intrametropolitan urban clusters in south China[J]. Computers Environment & Urban Systems, 2009, 33(3): 189-199.

    [2] KAUFMANN R K, SETO K C, SCHNEIDER A, et al. Climate response to rapid urban growth: evidence of a human-induced precipitation deficit[J]. Journal of Climate, 2007, 20(10): 2299-2306.

    [3] JA?D?EWSKA I. Spatial and dynamic aspects of the rank-size rule method. Case of an urban settlement in Poland[J]. Computers Environment & Urban Systems, 2017, 62: 199-209.

    [4] 戚伟, 刘盛和. 中国城市流动人口位序规模分布研究[J]. 地理研究, 2015, 34(10): 1981-1993.

    [5] 王法辉. 我国城市规模分布的统计模式研究[J]. 城市问题, 1989 (1): 14-20.

    [6] 余吉祥, 周光霞, 段玉彬. 中国城市规模分布的演进趋势研究——基于全国人口普查数据[J]. 人口与经济, 2013 (2): 44-52.

    [7] SCHWEITZER F, STEINBINK J. Urban cluster growth: analysis and computer simulation of urban aggregations[M] // SCHWEITZER F. Selforganization of complex structures: from individual to collective dynamics. London: Gordon and Breach, 1997: 501-518.

    [8] PUMAIN D. Hierarchy in natural and social sciences[M]. Dordrecht: Springer Netherlands, 2006: 14-19.

    [9] CHEN Y. The mathematical relationship between Zipf’s law and the hierarchical scaling law[J]. Physica A: Statistical Mechanics & Its Applications, 2012, 391(11): 3285-3299.

    [10] CHEN Y. The evolution of Zipf’s law indicative of city development[J]. Physica A: Statistical Mechanics & Its Applications, 2015, 443: 555-567.

    [11] JIANG B, JIA T. Zipf’s law for all the natural cities in the United States: a geospatial perspective[J]. International Journal of Geographical Information Science, 2011, 25(8): 1269-1281.

    [12] JIANG B, MIAO Y. The evolution of natural cities from the perspective of location-based social media[J]. The Professional Geographer, 2015, 67(2): 295-306.

    [13] LONG Y. Redefining Chinese city system with emerging new data[J]. Applied Geography, 2016, 75: 36-48.

    [14] JIANG B. Head/tail breaks: a new classification scheme for data with a heavy-tailed distribution[J]. Professional Geographer, 2013, 65(3): 482-494.

    [15] MASUCCI A P, ARCAUTE E, HATNA E, et al. Logistic growth and ergodic properties of urban forms[EB/OL]. (2015-10-27)[2017-05-18]. arXiv:1504.07380v3.

    [16] 钮心毅, 王垚, 丁亮. 利用手机信令数据测度城镇体系的等级结构[J]. 规划师, 2017, 33(1): 50-56.

    [17] ALEXANDER C. The city is not a tree[J]. Archit Forum, 1965, 122: 58-62, 58-61.

    [18] JIANG B. A city is a complex network[M]. Portland: Sustasis Press, 2015.

    [19] BATTY M. The new science of cities[J]. Building Research & Information, 2013, 38(1): 123-126.

    [20] BATTY M, LONGLEY P. Fractal cities: a geometr y of form and funct ion[EB/OL]. [2017-05-18] . ht tps://www.researchgate.net/publication/30867789_Fractal_Cities_-_A_Geometry_of_Form_and_Function

    [21] BATTY M. Cities and complexity: understanding cities with cellular automata, agent-based models, and fractals[M]. Cambridge MA: MIT Press, 2007: 113-115.

    [22] JIANG B. A complex-network perspective on Alexanders wholeness[J]. Physica A: Statistical Mechanics & Its Applications, 2016, 463: 475-484.

    [23] JIANG B. Wholeness as a hierarchical graph to capture the nature of space[J]. International Journal of Geographical Information Science, 2015, 29(9): 1632-1648.

    [24] JENKS G F. Generalization in statistical mapping[J]. Annals of the Association of American Geographers, 1963, 53(1): 15-26.

    [25] BREWER C A, PICKLE L. Evaluation of methods for classifying epidemiological data on choropleth maps in series[J]. Annals of the Association of American Geographers, 2002, 92(4): 662-681.

    [26] JIANG B, LIU X. Scaling of geographic space as a universal rule for map heneralization[J]. Annals of the Association of American Geographers, 2011, 103(4): 844-855.

    [27] JIANG B, YIN J. Ht-index for quantifying the fractal or scaling structure of Geographic features[J]. Annals of the Association of American Geographers, 2013, 104(3): 530-540.

    [28] GAO P, LIU Z, TIAN K, et al. Characterizing traffic conditions from the perspective of spatial-temporal heterogeneity[J]. ISPRS International Journal of Geo-Information, 2016, 5:34.

    [29] JIANG B. Head/tail breaks for visualization of city structure and dynamics[J]. Cities, 2015, 43(3): 69-77.

    [30] LONG Y, SHEN Y. Mapping parcel-level urban areas for a large geographical area[EB/OL]. [2017-05-18]. https://arxiv.org/abs/1403.5864.

    [31] JIANG B. Axwoman 6.3: an ArcGIS extension for urban morphological analysis. [EB/OL]. [2017-05-18]. http://giscience.hig.se/binjiang/axwoman/.


《国际城市规划》编辑部    北京市车公庄西路10号东楼E305/320    100037
邮箱:upi@vip.163.com  电话:010-58323806  传真:010-58323825
京ICP备13011701号-6  京公网安备11010802014223

3317713