点击排行
 
正文
全文下载次数:0
2020年第2期   DOI:10.19830/j.upi.2018.150
城市能耗模拟方法的比较研究
A Comparative Study of Urban Energy Consumption Simulation Methods

李艳霞 武玥 王路 王超 石邢

Li Yanxia, Wu Yue, Wang Lu, Wang Chao, Shi Xing

关键词:城市能耗;城市能耗模拟;自上而下法;自下而上法;一般流程

Keywords:Urban Energy Consumption; Urban Energy - Simulation; Top-down Approach; Bottom-up Approach; Conventional Prediction Process

摘要:

在全球气候变暖的背景下,提高能源利用效率是绿色建筑和生态城市领域的重要研究内容之一。在建筑层面,能耗模拟分析技术已经相当成熟;在城市层面,进行能耗模拟的难度较大,由于单体建筑数量多、类型多、构造多样,城市设施复杂,必须研究新的方法技术计算城市能耗。本文针对目前国际上最新的城市能耗模拟方法,总结出城市能耗模拟的一般性流程,并基于该流程对城市能耗模型的模拟方法进行比较分析。城市能耗模拟方法的探索和研究能够为城市能源政策的制定、城市能源安全、城市节能提供强有力的技术支持。 

Abstract:

In response to global warming, promoting energy efficiency is an important research field of green buildings and ecological cities. On the building level, energy simulation technology is quite mature. However, it is more difficult to simulate energy consumption on the urban level due to the large number of individual buildings, various types, diverse structures, and complex urban facilities,  thus new methods must be developed to calculate urban energy consumption. This paper summarizes the general process of urban energy simulation aiming at the most advanced simulation methods in the world, and compares the different methods of urban energy simulation based on this process. The research of urban energy consumption simulation methods can provide powerful technical support for urban energy policy formulation, urban energy security and urban energy conservation.

版权信息:
基金项目:国家重点研发计划资助项目(2017YFC0702300)课题(2017YFC0702302), 北京建筑大学北京未来城市设计高精尖创新中心(未来“城市—建筑”设计理论与探索实践研究)(UDC2018010411)
作者简介:

李艳霞,东南大学建筑学院,博士研究生。274531600@qq.com
武玥,东南大学建筑学院,硕士研究生。2278642636@qq.com
王路,东南大学建筑学院,硕士研究生。525334227@qq.com
王超,东南大学建筑学院,博士研究生。chaowang_seu@163.com
石邢(通信作者),同济大学建筑与城规学院,教授,博士生导师。shixing_seu@163.com

译者简介:

参考文献:
  • [1] UNEP. Cities and climate change[EB/OL]. [2015-05-17]. http://www.unep.org/resourceefficiency/Policy/ResourceEfficientCities/FocusAreas/CitiesandClimateChange/tabid/101665/Default.asp.
    [2] CHALAL M, BENACHIR M, WHITE M, et al. Energy planning and forecasting approaches for supporting physical improvement strategies in the building sector: a review[J]. Renewable and sustainable energy reviews, 2016, 64: 761-776.
    [3] YANG Z, GHAHRAMANI A, BECERIK-GERBER B. Building occupancy diversity and HVAC (heating, ventilation, and air conditioning) system energy efficiency[J]. Energy, 2016, 109: 641-649.
    [4] BECKER S, FREW B A, ANDRESEN G B, et al. Renewable build-up pathways for the US: generation costs are not system costs[J]. Energy, 2015, 81: 437-445.
    [5] CHOI J-K, MORRISON D, HALLINAN K P, et al. Economic and environmental impacts of community-based residential building energy efficiency investment[J]. Energy, 2014, 78: 877-886.
    [6] LACKO R, DROBNI_C B, MORI M, et al. Stand-alone renewable combined heat and power system with hydrogen technologies for household application[J]. Energy, 2014, 77: 164-170.
    [7] COMODI G, CIOCCOLANTI L, RENZI M. Modelling the Italian household sector at the municipal scale: micro-CHP, renewables and energy efficiency[J]. Energy, 2014, 68: 92-103.
    [8] Broin E ó, MATA E, G?RANSSON A, et al. The effect of improved efficiency on energy savings in EU-27 buildings[J]. Energy, 2013, 57: 134-148.
    [9] PARSHALL L, GURNEY K, HAMMER S A, et al. Modeling energy consumption and CO2 emissions at the urban scale: methodological challenges and insights from the United States[J]. Energy policy, 2010. 38(9): 4765-82.
    [10] AGENCY I E. Cities, Towns and renewable energy: yes in my front yard[J]. SourceOCDE Environnement et développement durable, 2009(12): 1-194.
    [11] 时宁国, 解亚萍. 基于细胞自动机的城市用地仿真研究[J]. 系统仿真技术, 2010, 6(3): 192-201.
    [12] 周欣, 燕达. 建筑能耗模拟软件空调系统模拟对比研究[J]. 暖通空调, 2014, 44(4): 113-131.
    [13] 周欣, 燕达. 区域建筑负荷特性及影响因素分析[J]. 暖通空调, 2014, 44(增刊1): 264-269.
    [14] LI W, ZHOU Y, CETIN K, et al. Modeling urban building energy use: a review of modeling approaches and procedures[J]. Energy, 2017, 141: 2445-2457.
    [15] DAVILA C C, REINHART C F, BEMIS J L. Modeling Boston: a workflow for the efficient generation and maintenance of urban building energy models from existing geospatial datasets[J]. Energy, 2016, 117: 237-250.
    [16] BR?GGER M, WITTCHEN K B. Flexible building stock modelling with array-programming[C]. Proceedings of the 15th IBPSA Conference San Francisco, CA, USA, 2017.
    [17] FONSECA J A, SCHLUETER A. Integrated model for characterization of spatiotemporal building energy consumption patterns in neighborhoods and city districts[J]. Applied energy, 2015, 142: 247-265.
    [18] TONN B, WHITE D. Residential electricity use, wood use, and indoor temperature; an econometric model[J]. Energy systems and policy, 1988,12(3): 151-166.
    [19] RAFFIO G, ISAMBERT O, MERTZ G, et al. Targeting residential energy assistance[C]. Proceedings of Energy Sustainability, 2007: 489-495.
    [20] AIGNER D J, SOROOSHIAN C, KERWIN P. Conditional demand analysis for estimating residential end-use load profiles[J]. Energy, 1984, 5(3): 81-97.
    [21] DAVILA C C, REINHART C F. Urban building energy modeling-a review of a nascent field[J]. Building and environment, 2016(97), 196-202.
    [22] CHEN Y, HONG T, PIETTE M A. City-scale building retrofit analysis: a case study using CityBES[C]. Proceedings of the 15th IBPSA Conference San Francisco, CA, USA, 2017: 1084-1091.
    [23] KRüGER A, KOLBE T H. Building analysis for urban energy planning using key indicators on virtual 3D city models-the energy atlas of Berlin[C]. Proc ISPRS Congr, 2012.
    [24] GR?GER G, PLüMER L. CityGML interoperable semantic 3D city models[C]. ISPRSJ Photogramm Remote Sensing, 2012, 71: 12-33.
    [25] NOUVEL R, ZIRAK M, DASTAGEERI H, et al. Urban energy analysis based on 3D city model for national scale applications[C]. Present. IBPSA Germany Conference, vol. 8, 2014.
    [26] SARAN S, WATE P, SRIVASTAV S K, et al. CityGML at semantic level for urban energy conservation strategies[J]. AnnGIS, 2015, 21: 27-41.
    [27] ALAM N, COORS V, ZLATANOVA S, et al. Shadow effect on photo-voltaic potentiality analysis using 3D city models[C]. International Society for Photogrammetry and Remote Sensing (ISPRS), 2012.
    [28] ZHU L, MAO H. Building interior model interpolation between IFC and CityGML[J]. The open construction building technology journal, 2015(9): 170-176.
    [29] 潘毅群, 郁丛, 龙惟定, 等. 区域建筑负荷与能耗预测研究综述[J]. 暖通空调, 2015(3): 33-40.
    [30] LI C. GIS for urban energy analysis[J]. Comprehensive geographic information systems, 2018(2): 187-195.

《国际城市规划》编辑部    北京市车公庄西路10号东楼E305/320    100037
邮箱:upi@vip.163.com  电话:010-58323806  传真:010-58323825
京ICP备13011701号-6  京公网安备11010802014223

4037032