DOI: 10.19830/j.upi.2023.310
Empirical Correlations Between Urban Form and Climate Resilience: A Study of Flooding Events in Macau

Li Chaosu, Zhu Penghui, Li Kexin, Zhou Long

Keywords: Urban Built Environment; Resilient City; Extreme Rainfall; Runoff Recession Velocity; Macau; High-density City

Abstract:

In recent decades, climate change has led to a visible increasing frequency and intensity of urban disasters, and climate resilience has gradually become a research focus. However, the lack of quantitative empirical research on climate resilience results in excessive focus on conceptual debate and preliminary theoretical exploration. Using Macau as the testbed, we use flooding events as the context and construct a conceptual framework and empirical model to explore the relationship between urban form and flood resilience. Specifically, we reveal the correlations between multi-dimensional urban form and flood resilience based on the real-time water level data during the flooding events, and propose strategies for improving resilience in rains referring to urban form. The fixed-effects regression results show that road density, building setback, pipe density, and NDVI are significantly related to the built environment resilience towards rainfall. The study highlights the importance of spatial policy and urban form guidance for improving urban climate resilience, and improves the resilient cities theory from an empirical perspective, and effectively responds to the issue that existing related studies over immerse in conceptual deduction and lack quantitative empirical research.


Funds:

Brief Info of Author(s):

References:
  • [1] BOYER M A, MEINZER M, BILICH A. The climate adaptation imperative: local choices targeting global problems?[J]. Local environment, 2017, 22(1): 67-85.

    [2] HOCHRAINER-STIGLER S, LAURIEN F, VELEV S, et al. Standardized disaster and climate resilience grading: a global scale empirical analysis of community flood resilience[J]. Journal of environmental management, 2020, 276: 1-10.

    [3] 赫磊 , 解子昂 . 走向韧性 :城市综合防灾规划研究综述与展望 [J]. 城乡规划 , 2021(3): 43-54.

    [4] JHA A K, BLOCH R, LAMOND J. Cities and flooding: a guide to integrated urban f lood risk management for the 21st century[M]. Washington, DC: The World Bank, 2012.

    [5] HALLEGATTE S. Economic resilience: definition and measurement[R]. Washington, DC: The World Bank, 2014: 1-44.

    [6] HIRABAYASHI Y, MAHENDRAN R, KOIRALA S, et al. Global flood risk under climate change[J]. Nature climate change, 2013, 3(9): 816-821.

    [7] JONGMAN B, WARD P J, AERTS J C J H. Global exposure to river and coastal flooding: long term trends and changes[J]. Global environmental change, 2012, 22(4): 823-835.

    [8] DILLEY M, CHEN R S, DEICHMANN U, et al. Natural disaster hotspots: a global risk analysis[M]. Washington, DC: The World Bank, 2005: 1-132.

    [9] KOCORNIK-MINA A, MCDERMOTT T K J, MICHAELS G, et al. Flooded cities[J]. American economic journal: applied economics, 2020, 12(2): 35-66.

    [10] YANG C, ZHAN Q, GAO S, et al. Characterizing the spatial and temporal variation of the land surface temperature hotspots in Wuhan from a local scale[J]. Geo-spatial information science, 2020, 23(4): 327-340.

    [11] 祝新明 , 王旭红 , 周永芳 , 等 . 建成区扩张下的西安市热环境空间分异性 [J]. 生态学杂志 , 2017, 36(12): 3574-3583.

    [12] CHUN B, GULDMANN J M. Spatial statistical analysis and simulation of the urban heat island in high-density central cities[J]. Landscape and urban planning, 2014, 125: 76-88.

    [13] CHUN B, GUHATHAKURTA S. Daytime and nighttime urban heat islands statistical models for Atlanta[J]. Environment and planning b: urban analytics and city science, 2017, 44(2): 308-327.

    [14] STONE B, LANZA K, MALLEN E, et al. Urban heat management in Louisville, Kentucky: a framework for climate adaptation planning[J]. Journal of planning education and research, 2019: 1-13.

    [15] BAIK J J, KIM Y H, CHUN H Y. Dry and moist convection forced by an urban heat island[J]. Journal of applied meteorology, 2001, 40(8): 1462-1475.

    [16] GARTLAND L M. Heat islands: understanding and mitigating heat in urban areas[M]. London: Routledge, 2008.

    [17] STONE B, HESS J J, FRUMKIN H. Urban form and extreme heat events: are sprawling cities more vulnerable to climate change than compact cities?[J]. Environmental health perspectives, 2010, 118(10): 1425-1428.

    [18] ARNOLD C L, GIBBONS C J. Impervious surface coverage: the emergence of a key environmental indicator[J]. Journal of the American Planning Association, 1996, 62(2): 243-258.

    [19] PAUL M J, MEYER J L. Streams in the urban landscape[J]. Annual review of ecology and systematics, 2001, 32: 333-365.

    [20] BRODY S, KIM H, GUNN J. Examining the impacts of development patterns on flooding on the Gulf of Mexico Coast[J]. Urban studies, 2013, 50(4): 789-806.

    [21] BRODY S D, GUNN J, PEACOCK W, et al. Examining the influence of development patterns on flood damages along the Gulf of Mexico[J]. Journal of planning education and research, 2011, 31(4): 438-448.

    [22] LEE H, SONG K, KIM G, et al. Flood-adaptive green infrastructure planning for urban resilience[J]. Landscape and ecological engineering, 2021, 17: 1-11.

    [23] LENNON M, SCOTT M, O’NEILL E. Urban design and adapting to flood risk: the role of green infrastructure[J]. Journal of urban design, 2014, 19(5): 745-758.

    [24] LI L, UYTTENHOVE P, VANEETVELDE V. Planning green infrastructure to mitigate urban surface water flooding risk—a methodology to identify priority areas applied in the city of Ghent[J]. Landscape and urban planning, 2020, 194: 1-12.

    [25] JABAREEN Y. Planning the resilient city: concepts and strategies for coping with climate change and environmental risk[J]. Cities, 2013, 31: 220-229.

    [26] MEEROW S, NEWELL J P, STULTS M. Defining urban resilience: a review[J]. Landscape and urban planning, 2016, 147: 38-49.

    [27] KEATING A, CAMPBELL K, SZOENYI M, et al. Development and testing of a community flood resilience measurement tool[J]. Natural hazards and earth system sciences, 2017, 17(1): 77-101.

    [28] 翟国方 , 夏陈红 . 我国韧性国土空间建设的战略重点 [J]. 城市规划 , 2021, 45(2): 44-48.

    [29] 段怡嫣 , 翟国方 , 李文静 . 城市韧性测度的国际研究进展 [J]. 国际城市规划 , 2021, 36(6): 79-85. DOI: 10.19830/j.upi.2019.439.

    [30] HOLLING C S. Resilience and stability of ecological systems[J]. Annual review of ecology and systematics, 1973, 4: 1-23.

    [31] 邵亦文 , 徐江 . 城市韧性 :基于国际文献综述的概念解析 [J]. 国际城市规划 , 2015, 30(2): 48-54.

    [32] 廖桂贤 , 林贺佳 , 汪洋 . 城市韧性承洪理论——另一种规划实践的基础 [J]. 国际城市规划 , 2015, 30(2): 36-47.

    [33] 李可欣 , 李超骕 . 多维度视角下城市形态与气候韧性的关联 [J]. 城乡规划 , 2021(3): 20-27.

    [34] MCCLYMONT K, MORRISON D, BEEVERS L, et al. Flood resilience: a systematic review[J]. Journal of environmental planning and management, 2020, 63(7): 1151-1176.

    [35] CUTTER S L, BARNES L, BERRY M, et al. A place-based model for understanding community resilience to natural disasters[J]. Global environmental change, 2008, 18(4), 598-606.

    [36] LAURIEN F, KEATING A. Evidence from measuring community flood resilience in Asia[R/OL]. Mandaluyong: Asian Development Bank, 2019[2021-11-13]. https://www.adb.org/publications/measuring-community-flood-resilience-asia.

    [37] BRUNEAU M, CHANG S, EGUCHI R, et al. a framework to quantitatively assess and enhance the seismic resilience of communities[J]. Earthquake spectra, 2003, 19(4): 737-738.

    [38] ADGER W N, HUGHES T P, FOLKE C, et al. Social-ecological resilience to coastal disasters[J]. Science, 2005, 309(5737): 1036-1039.

    [39] SHARIFI A. Resilient urban forms: a macro-scale analysis[J]. Cities, 2019, 85: 1-14.

    [40] SHARIFI A. Urban form resilience: a meso-scale analysis[J]. Cities, 2019, 93: 238-252.

    [41] SHARIFI A. Resilient urban forms: a review of literature on streets and street networks[J]. Building and environment, 2019, 147: 171-187.

    [42] SHARIFI A, YAMAGATA Y. Resilient urban form: a conceptual framework[M] // YAMAGATA Y, SHARIFI A. Resilience-oriented urban planning. Switzerland: Springer, Cham. 2018: 167-179.

    [43] BOTTAZZI P, WINKLER M S, IFEJIKA SPERANZA C. Flood governance for resilience in cities: the historical policy transformations in Dakar’s suburbs[J]. Environmental science & policy, 2019, 93: 172-180.

    [44] REHAK D, SENOVSKY P, SLIVKOVA S. Resilience of critical infrastructure elements and its main factors[J]. Systems, 2018, 6(2): 21.

    [45] ALIZADEH H, SHARIFI A. Assessing resilience of urban critical infra structure networks: a case study of Ahvaz, Iran[J]. Sustainability, 2020, 12(9): 3691.

    [46] CANTONI F, MORI E, VENEZIANI R, et al. Strengthening resilience through participatory development of“life and social skills”in flood management[J]. City, culture and society, 2020, 22: 100358.

    [47] LIAO K-H. A theory on urban resilience to floods – a basis for alternative planning practices[J/OL]. [2022-10-11]. Ecology and society, 2012, 17(4). http://www.jstor.org/stable/26269244.

    [48] MIGUEZ M, VEROL A. A catchment scale Integrated Flood Resilience Index to support decision making in urban flood control design[J]. Environment and planning b: planning and design, 2016, 44(5): 925-946.

    [49] BULTI D T, GIRMA B, MEGENTO T L. Community flood resilience assessment frameworks: a review[J]. SN applied sciences, 2019, 1(12): 1663.

    [50] SHUSTER W D, BONTA J, THURSTON H, et al. Impacts of impervious surface on watershed hydrology: a review[J]. Urban water journal, 2005, 2(4): 263-275.

    [51] ROSE S, PETERS N E. Effects of urbanization on streamflow in the Atlanta area (Georgia, USA): a comparative hydrological approach[J]. Hydrological processes, 2001, 15(8): 1441-1457.

    [52] CHEN A S, HAMMOND M J, DJORDJEVI? S, et al. From hazard to impact: flood damage assessment tools for mega cities[J]. Natural hazards, 2016, 82(2): 857-890.

    [53] MILLER J, KIM H, KJELDSEN T, et al. Assessing the impact of urbanization on storm runoff in a peri-urban catchment using historical change in impervious cover[J]. Journal of hydrology, 2014, 515(16): 59-70.

    [54] BRODY S D, ZAHRAN S, HIGHFIELD W E, et al. Identifying the impact of the built environment on flood damage in Texas[J]. Disasters, 2008, 32(1): 1-18.

    [55] BRODY S D, BLESSING R, SEBASTIAN A, et al. Examining the impact of land use/land cover characteristics on flood losses[J]. Journal of environmental planning and management, 2014, 57(8): 1252-1265.

    [56] LEE Y. Examining the impact of built environment on flood losses in Seoul, Korea[D]. College Station: Texas A&M University, 2016.

    [57] HUNTER N M, BATES P D, NEELZ S, et al. Benchmarking 2D hydraulic models for urban flooding[J]. Proceedings of the institution of civil engineers- water management, 2008, 161(1): 13-30.

    [58] LIU H, TATANO H, KAJITANI Y, et al. Analysis of the influencing factors on industrial resilience to flood disasters using a semi-markov recovery model: a case study of the heavy rain event of july 2018 in Japan[J]. International journal of disaster risk reduction, 2022, 82: 103384.

    [59] AHIABLAME L M, ENGEL B A, CHAUBEY I. Effectiveness of low impact development practices: literature review and suggestions for future research[J]. Water, air, & soil pollution, 2012, 223(7): 4253-4273.

    [60] MORELLI A B, CUNHA A L. Measuring urban road network vulnerability to extreme events: an application for urban floods[J]. Transportation research part d: transport and environment, 2021, 93(6): 1-13.

    [61] BRODY S D, ZAHRAN S, MAGHELAL P, et al. The rising costs of floods: examining the impact of planning and development decisions on property damage in Florida[J]. Journal of the American Planning Association, 2007, 73(3): 330-345.

    [62] PISTRIKA A, TSAKIRIS G, NALBANTIS I. Flood depth-damage functions for built environment[J]. Environmental processes, 2014, 1(4): 553-572.

    [63] TAHMASEBI BIRGANI Y, YAZDANDOOST F. Resilience in urban drainage risk management systems[J]. Water management, 2016, 169: 3-16.

    [64] BERTILSSON L, WIKLUND K, DE MOURA TEBALDI I, et al. Urban flood resilience — a multi-criteria index to integrate flood resilience into urban planning[J]. Journal of hydrology, 2019, 573: 970-982.

    [65] COATES G, ALHARBI M, LI C, et al. Evaluating the operational resilience of small and medium-sized enterprises to flooding using a computational modelling and simulation approach: a case study of the 2007 flood in Tewkesbury[J]. Philosophical transactions of the royal society a, 2020: 1-16.

    [66] SONG J, HUANG B, LI R. Measuring recovery to build up metrics of flood resilience based on pollutant discharge data: a case study in East China[J]. Water, 2017, 9(8): 1-20.

    [67] WANG Y, MENG F, LIU H, et al. Assessing catchment scale flood resilience of urban areas using a grid cell based metric[J]. Water research, 2019, 163: 114852.

    [68] HINO M, BELANGER S, FIELD C, et al. High-tide flooding disrupts local economic activity[J]. Science advances, 2019, 5(2): 1-9.

    [69] HIGHFIELD W E, BRODY S D. Evaluating the effectiveness of local mitigation activities in reducing flood losses[J]. Natural hazards review, 2013, 14(4): 229-236.

    [70] BRUWIER M, MUSTAFA A, ALIAGA D G, et al. Influence of urban pattern on inundation flow in floodplains of lowland rivers[J]. Science of the total environment, 2018, 622-623: 446-458.

    [71] GUO K, GUAN M, YU D. Urban surface water flood modelling — a comprehensive review of current models and future challenges[J]. Hydrology and earth system sciences, 2021, 25(5): 2843-2860.

    [72] THIEKEN A H, MüLLER M, KREIBICH H, et al. Flood damage and influencing factors: new insights from the August 2002 flood in Germany[J]. Water resources research, 2005, 41(12): 1-16.

    [73] LI C, SUN N, LU Y, et al. Review on urban flood risk assessment[J]. Sustainability, 2022, 15(1): 765. 

    [74] BARBARO G, MIGUEZ M G, DE SOUSA, M M, et al. Innovations in best practices: approaches to managing urban areas and reducing flood risk in Reggio Calabria (Italy)[J]. Sustainability, 2021, 13(6): 3463.

    [75] MIGUEZ M G, RAUPP I P, VEROL A P. An integrated quantitative framework to support design of resilient alternatives to manage urban flood risks[J]. Journal of flood risk management, 2019, 12(5): 1-13.

    [76] ELKHRACHY I. Flash flood water depth estimation using SAR images, digital elevation models, and machine learning algorithms[J]. Remote sensing, 2022, 14(3): 440.

    [77] WANG H-L, WANG H-F, WU Z-N, et al. Using multi-factor analysis to predict urban flood depth based on Naive Bayes[J]. Water, 2021, 13(4):432.

    [78] ZHENG J, HUANG G. A novel grid cell-based urban flood resilience metric considering water velocity and duration of system performance being impacted[J]. Journal of hydrology, 2023, 617: 128911.

    [79] GAO P, GAO W, KE N. Assessing the impact of flood inundation dynamics on an urban environment[J]. Natural hazards, 2021, 109(1): 1047-1072.

    [80] BODOQUE J M, AROCA-JIMéNEZ E, EGUIBAR M á, et al. Developing reliable urban flood hazard mapping from LiDAR data[J]. Journal of hydrology, 2023, 617: 128975.

    [81] MEDIERO L, SORIANO E, ORIA P, et al. Pluvial flooding: high-resolution stochastic hazard mapping in urban areas by using fast-processing DEM-based algorithms[J]. Journal of hydrology, 2022, 608: 127649.

    [82] ERNSTBENJAMIN J, DEWALS B, DETREMBLEUR S, et al. Micro-scale flood risk analysis based on detailed 2D hydraulic modelling and high resolution geographic data[J]. Natural hazards, 2010, 55: 181-209.

    [83] TANGUY M, CHOKMANI K, BERNIER M, et al. River flood mapping in urban areas combining Radarsat-2 data and flood return period data[J]. Remote sensing of environment, 2017, 198: 442-459.

    [84] DISSE M, JOHNSON T G, LEANDRO J, et al. Exploring the relation between flood risk management and flood resilience[J]. Water security,2020, 9: 1-9.

    [85] 王英 , 蒋依凡 , 曹蕾 . 高密度居住与澳门发展对策研究 [J]. 城市与区域规划研究 , 2019(3): 100-117.

    [86] BRODY S D, HIGHFIELD W E, BLESSING R. An analysis of the effects of land use and land cover on flood losses along the Gulf of Mexico Coast from 1999 to 2009[J]. Journal of the American Water Resources Association, 2015, 51: 1556-1567.

    [87] DEBBAGE N, SHEPHERD J M. The influence of urban development patterns on streamflow characteristics in the Charlanta Megaregion[J]. Water resources research, 2018, 54(5): 3728-3747.

    [88] BRODY S D, HIGHFIELD W E. Open space protection and flood mitigation: a national study[J]. Land use policy, 2013, 32: 89-95.

    [89] BRODY S D, SEBASTIAN A, BLESSING R, et al. Case study results from southeast Houston, Texas: identifying the impacts of residential location on flood risk and loss[J]. Journal of flood risk management, 2018, 11: 110-120.

    [90] YAO L, WEI W, CHEN L D. How does imperviousness impact the urban rainfall-runoff process under various storm cases?[J]. Ecological indicators, 2016, 60: 893-905.

    [91] ZHANG B, XIE G, LI N, et al. Effect of urban green space changes on the role of rainwater runoff reduction in Beijing, China[J]. Landscape and urban planning, 2015, 140: 8-16.

    [92] DAVIDSEN S, L?WE R, RAVN N H, et al. Initial conditions of urban permeable surfaces in rainfall-runoff models using Horton’s infiltration[J]. Water science and technology: a journal of the International Association on Water Pollution Research, 2018, 77(3): 662-669.

    [93] LIU W, CHEN W, FENG Q. Field simulation of urban surfaces runoff and estimation of runoff with experimental curve numbers[J]. Urban water journal, 2018, 15(12): 1-9.

    [94] FORMAN R T T, ALEXANDER L E. Roads and their major ecological effects[J]. Annual review of ecology and systematics, 1998, 29(1): 207-231.

    [95] RAHMAN M, NINGSHENG C, MAHMUD G I, et al. Flooding and its relationship with land cover change, population growth, and road density[J]. Geoscience frontiers, 2021, 12(6): 101224.

    [96] LEE Y, BRODY S D. Examining the impact of land use on flood losses in Seoul, Korea[J]. Land use policy, 2018, 70: 500-509.

    [97] BRODY S D, HIGHFIELD W E, RYU H C, et al. Examining the relationship between wetland alteration and watershed flooding in Texas and Florida[J]. Natural hazards, 2007, 40(2): 413-428.

    [98] BRODY S D, KANG J E, BERNHARDT S. Identifying factors influencing flood mitigation at the local level in Texas and Florida: the role of organizational capacity[J]. Natural hazards, 2010, 52(1): 167-184.

    [99] LEE S, NAKAGAWA H, KAWAIKE K, et al. Urban inundation simulation considering road network and building configurations: mesh generation[J]. Journal of flood risk management, 2016, 9(3): 224-233.

    [100] TIMM A, KLUGE B, WESSOLEK G. Hydrological balance of paved surfaces in moist mid-latitude climate — a review[J]. Landscape and urban planning, 2018, 175: 80-91.

    [101] WOLTEMADE C. Impact of residential soil disturbance on infiltration rate and stormwater runoff[J]. Journal of the American Water Resources Association, 2010, 46: 700-711.

    [102] BARTENS J, DAY S, HARRIS J, et al. Can urban tree roots improve infiltration through compacted subsoils for stormwater management?[J]. Journal of environmental quality, 2008, 37: 2048-2057.

    [103] REDFERN T W, MACDONALD N, KJELDSEN T R, et al. Current understanding of hydrological processes on common urban surfaces[J]. Progress in physical geography, 2016, 40(5): 699-713.

    [104] LIU W, FENG Q, DEO R, et al. Experimental study on the rainfall-runoff responses of typical urban surfaces and two green infrastructures using scale-based models[J]. Environmental management, 2020, 66: 683-693. 

    [105] REZAEI A, ISMAIL Z, NIKSOKHAN M H, et al. Investigating the effective factors influencing surface runoff generation in urban catchments — a review[J]. Desalination and water treatment, 2019, 164: 276-292.


TOP 10