点击排行
 
正文
全文下载次数:2324
2014年第2期   DOI:
城市能源系统改造模拟方法: 泰恩河畔纽卡斯尔的当前实践和未来挑战
Modelling Approaches for Retrofitting Energy Systems in Cities: Current Practice and Future Challenges in Newcastle upon Tyne

卡洛斯· 卡尔德隆 玛卡雷娜· 罗德里格斯 著 路宁 李铠 译

Carlos Calderon, Macarena Rodriguez

关键词:旧城改造;城区能源消耗;能耗模型;反弹效应;需求侧管理

Keywords:Urban Regeneration; Urban Energy Consumption; Energy Consumption Model; Rebound Effect; Demand Side Management

摘要:

文章回顾了英国的碳减排议程和当前地方在构建城市能源模型方面的实践与挑战,提出了技术与社会系统相互作用下的模型研究与定量理解中存在的一些缺陷。文章还梳理了对家居行为和能源需求已有的模型方法,以便将研究重点(反弹效应和需求侧管理)以及研究采用的行为模型的基本原理纳入整体研究框架。该模型模拟和量化了技术系统的改造和家居行为之间相互作用中的两个突出部分——反弹效应和需求侧管理。利用这一模型,文章详细阐释了对泰恩河畔纽卡斯尔200 套社会住宅的案例研究,研究结果对于旧城改造的规划决策系统建设具有重要的理论与现实意义。

Abstract:

The paper reviews the UK carbon agenda and current local practices and challenges in urban energy modelling as to highlight the lack of models and quantitative understanding of the interplay between technical and social systems. The paper also reviews existing modelling household practices and energy demand to contextualize the emphasis of our study( i.e. take back effect and demand side management) and the rationale behind our selected approach: activity base model. The model is used to model and quantify two salient aspects of the interaction between retrofitted technical systems and household practices:( 1) rebound effect; and( 2) demand side management. By applying the model,the paper presents a case study using 200 social households in Newcastle upon Tyne. Finally,we propose a theoretical model and its detailed implementation. The modeling results have important theoretical and practical implications for the development of planning decision support system for urban regeneration. 

版权信息:
基金项目:
作者简介:

作者: 卡洛斯·卡尔德隆,博士,英国纽卡斯尔大学建筑、规划和景观学院, 高级讲师。carlos.calderon@newcastle.ac.uk 

           玛卡雷娜· 罗德里格斯,博士,英国纽卡斯尔大学建筑、规划和景观学院,高级讲师。macarena.rodriguez@newcastle.ac.uk 

译者: 路宁,纽卡斯尔大学建筑、规划和景观学院,博士研究生 

           李铠,北京大学城市与环境学院,城市与区域规划系,硕士研究生

译者简介:

参考文献:
  • [1] Alcott B, Giampietro M, Mayumi K, Polimeni J M. The Jevons Paradox and the Myth of Resource Efficiency Improvements[M]. London: Earthscan, 2012. 

    [2] Aruna S. Activity-based Modelling for Urban Energy System [M] // Keirstead J, Shah N, eds. Urban Energy Systems: An Integrated Approach. London: Routledge, 2013. 

    [3] Axelrod R M. The Complexity of Cooperation: Agent-based Models of Competition and Collaboration[M]. Princeton: Princeton University Press, 1997. 

    [4] Axhausen K W. Can we ever obtain the data we would like to have[M] // G?rling T, Laitila T, Westin K. Theoretical Foundations of Travel Choice Modeling. Amsterdam: Elsevier Science BV, 1998: 305-323. 

    [5] Bonabeau E. Agent-based Modeling: Methods and Techniques for Simulating Human Systems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99 (3): 7280-7287. 

    [6] Calderon C, Keirstead J. Modelling Frameworks for Delivering Low-carbon Cities: Advocating a Normalized Practice[J]. Building Research & Information, 2012, 40 (4): 504-517. 

    [7] Chappells H, Shove E. Debating the Future of Comfort: Environmental Sustainability, Energy Consumption and the Indoor Environment[J] Building Research & Information, 2005, 33 (1): 32-40. 

    [8] Davoudi S, Brooks E. Environmental Justice and the City: Full Report[R]. Newcastle: Newcastle University, Global Urban Research Unit, 2012. 

    [9] Druckman A, Jackson T. Household Energy Consumption in the UK: A Highly Geographically and Socio-Economically Disaggregated Model[J]. Energy Policy, 2008, 36 (8): 3177-3192. 

    [10] Gellings C W, Barron W, Betley F M, England W A, Preiss L L, Jones D E. Integrating Demand-side Management into Utility Planning[J]. Power Systems, IEEE Transactions on, 1986, 1 (3): 81-87. 

    [11] Greening L, Greene D L, Difiglio C. Energy Efficiency and Consumption - The Rebound Effect - A Survey[J]. Energy Policy, 2000, 28 (6): 389-401. 

    [12] Guy S, Marvin S, Moss T. Urban Infrastructure in Transition: Networks, Buildings and Plans[M]. London: Earthscan, 2001. 

    [13] IEA. Implementing Agreement on Demand-side Management Technologies and Programmes, 2011 Annual Report[EB/OL]. Paris: International Energy Agency, 2012 [2013-09-11]. http://www.ieadsm.org/Files/Exco%20 File%20Library/Annual%20Reports/REV.Annual%20report_2011C_lag. pdf . 

    [14] Jager W. Modelling Consumer Behaviour[R]. Groningen: University of Groningen, Centre for Environmental and Traffic Psychology, 2000. 

    [15] Jennings, M. Building Energy Service Demands: The Potential of Retrofits[M] // Keirstead J, Shah N, eds. Urban Energy Systems: An Integrated Approach. London: Routledge, 2013. 

    [16] Kane T, Firth S K, Allinson D, Irvine K, Lomas K J. Understanding Occupant Heating Practices In UK Dwellings[C] // Proceedings of World Renewable Energy Congress 2011. Link?ping, Sweden, 2011. 

    [17] Keirstead J, Calderon C. Capturing Spatial Effects, Technology Interactions, and Uncertainty in Urban Energy and Carbon Models: Retrofitting Newcastle as a Case-study[J]. Energy Policy, 2012 (46): 253- 267. 

    [18] Keirstead J, Shah N. Urban Energy Systems: An Integrated Approach[M]. London: Routledge, 2013. 

    [19] Keirstead J, Sivakumar A. Using Activity-based Modeling to Simulate Urban Resource Demands at High Spatial and Temporal Resolutions[J]. Journal of Industrial Ecology, 2012, 16 (6): 889-900. 

    [20] Martinez-Moyano I J, Zhao F, Simunich K L, Graziano D J, Conzelmann G. Modeling the Commercial Buildings Sector: An Agent-Based Approach, ASHRAE Annual Conference[C]. Montreal: ASHRAE Transactions, 2011. 

    [21] Maya Sopha B, Kl?ckner C A, Hertwich E G. Exploring policy Options for a Transition to Sustainable Heating System Diffusion Using an Agent-based Simulation[J]. Energy Policy, 2011, 39 (5): 2722-2729. 

    [22] Miller E J, Roorda M J. Prototype Model of Household Activity-travel Scheduling[J]. Transportation Research Record: Journal of the Transportation Research Board, 2003, 1831 (1): 114-121. 

    [23] Milne G, Boardman B. Making Cold Homes Warmer: The Effect of Energy Efficiency Improvements in Low-income Homes[J]. Energy Policy, 2000, 28 (6): 411-424. 

    [24] Newcastle City Council. Citywide Climate Change Strategy and Action Plan 2010-2020 (Draft)[EB/OL]. Newcastle City Council, 2010. http:// www.newcastle.gov.uk/wwwfileroot/legacy/ns/environment/DRAFTforPu blicConsultationClimateChangeStrategyActionPlanJune2010.pdf. 

    [25] Palmer J, Sorda G, Madlener R. Modeling the Diffusion of Residential Photovoltaic Systems in Italy: An Agent-based Simulation[R]. Aachen: RWTH Aachen University, Institute for Future Energy Consumer Needs and Behavior, 2013. 

    [26] Pinjari A R, Bhat C R. Activity-based Travel Demand Analysis[M] // Palma A, Lindsey R, Quinet E, Vickerman R, eds. A Handbook of Transport Economics. Cheltenham: Edward Elgar, 2011: 213-248. 

    [27] Powells G, Bulkeley H, Judson E, Bell S. Smart Grids and the Flexibility of Everyday Life[C] // Proceedings: 12th Annual IAS-STS Conference: Critical Issues in Science and Technology Studies. Graz, Austria, 2013. 

    [28] Rhoads J. Low Carbon Retrofit Toolkit - A Roadmap to Success[EB/OL]. London: Better Buildings Partnership, 2010[2014-01-15]. http://www. betterbuildingspartnership.co.uk/download/bbp_low_carbon_retrofit_ toolkit.pdf. 

    [29] Samsatli N, Jennings M. Optimization and systems integration[M] // Keirstead J, Shah N, eds. Urban Energy Systems: An Integrated Approach. London: Routledge, 2013. 

    [30] Sanders C, Phillipson M. Review of Differences Between Measured and Theoretical Energy Savings for Insulation Measures[R]. Glasgow: Glasgow Caledonian University, 2006. 

    [31] Shackley S, Fleming P, Bulkeley H. Low Carbon Spaces Area-based 

    Carbon Emission Reduction: A Scoping Study[R]. London: Sustainable Development Commission, 2002. 

    [32] Shah N. Modelling Urban Energy System[M] // Keirstead J, Shah N, eds. Urban Energy Systems: An Integrated Approach. London: Routledge, 2013. 

    [33] Shorrock L D, Henderson J, Utley J I. Reducing Carbon Emissions from the UK Housing Stock[M]. Watford: BRE Press, 2005. 

    [34] Shove E. Comfort, Cleanliness and Convenience: The Social Organization of Normality[M]. Oxford: BERG Publishers, 2003. 

    [35] Shove E, Watson M, Hand M, Ingram J. The Design of Everyday Life[M]. Oxford: BERG Publishers, 2007. 

    [36] Sorrell S. The Rebound Effect: An Assessment of the Evidence for Economy-wide Energy Savings from Improved Energy Efficiency[R]. UK Energy Research Centre, 2007. 

    [37] Trochim W M K, Donnelly J P. The Research Methods Knowledge Base[M]. Cincinnati, OH: Atomic Dog/Cengage Learning, 2008. 

    [38] Vale B, Vale R. Domestic Energy Use, Lifestyles and POE: Past Lessons for Current Problems[J]. Building Research & Information, 2010, 38 (5): 578-588. 

    [39] Zhang T, Nuttall W J. An Agent Based Simulation of Smart Metering Technology Adoption[R]. University of Cambridge: Judge Institute of Management, 2007. 

《国际城市规划》编辑部    北京市车公庄西路10号东楼E305/320    100037
邮箱:upi@vip.163.com  电话:010-58323806  传真:010-58323825
京ICP备13011701号-6  京公网安备11010802014223

2189420