点击排行
 
正文
全文下载次数:576
2021年第5期   DOI:10.19830/j.upi.2021.407
三维城市空间形态演进及其地表热岛效应的规划应对——以北京市为例
Analyzing the Transformation of 3D Urban Morphology and Corresponding Surface Heat Island Effect in Beijing

蔡智 唐燕 刘畅 马蒂亚斯· 德米泽尔

Cai Zhi, Tang Yan, Liu Chang, Matthias Demuzere

关键词:地表温度 ;地表热岛 ;三维空间形态 ;局地气候分区 ;演进 ;北京

Keywords:Land Surface Temperature; Surface Urban Heat Island; Three-dimensional Urban Morphology; Local Climate Zone; Transformation; Beijing

摘要:

快速城市化进程显著改变了城市地区的物质空间形态,并常常引发系列生态环境问题,其中较为显著的是城市热岛效应。本文基于 Landsat 系列、Sentinel系列等多源卫星遥感数据和深度学习方法,采用系统化的局地气候分区城市空间形态分类方案,识别并分析了北京近 20 年三维城市空间形态的演进特征和地表热岛效应。结果表明,北京低层形态类型持续收缩,向高层类型(紧凑高层、开敞高层)发展的趋势明显,分析其驱动力可以发现城市规划和政府政策扮演了至关重要的角色。空间形态演进也影响并改变了北京城市地表热岛的分布格局,高温热岛区主要集中在紧凑低层、紧凑中层和大体量低层里。本文针对城市空间形态类型不同的地表热岛效应,提出了差异化的规划应对策略,以期为缓解城市地表热岛效应、增强城市气候适应性等提供决策支持。


Abstract:

Rapid urbanization has changed the physical urban morphology, and results in various environmental problems, one is the urban heat island effect. In this paper, we use multi-source satellite remote sensing data (e.g., Landsat series and Sentinel series) and deep-learning technology to identify and analyze the three-dimensional (3D) urban morphology transformation characteristics in Beijing, as well as its corresponding surface urban heat island effect in recent 20 years, which is based on Local Climate Zone (LCZ) scheme. The results show that the morphological types of low-rise buildings continued to shrink and the trend towards high-rise types (e.g., compact high-rise, open high-rise) is obvious. The transformation of urban morphology is mainly driven by urban planning and government policies. Urban morphology transformation has also affected and changed the spatial-temporal distribution of surface urban heat island in Beijing. High surface urban heat island effect zones mainly appear in the compact low-rise, compact mid-rise and large low-rise types. Based on those analyses, corresponding planning strategies have been put forward to provide decision support for mitigate surface urban heat island and enhancing urban climate adaptability.


版权信息:
基金项目:国家自然科学基金(51978363)、北京社会科学基金(19GLB034)、国家重点研发计划(2018YFC0704600)、首都区域空间规划研究北京市重点实验室开放课(CLAB202009)、“清华—腾讯”2020 WeSpace 学术支持计划联合资助
作者简介:

蔡智,清华大学建筑学院,博士研究生。czhi911@gmail.com

唐燕(通信作者),清华大学建筑学院,博士生导师。yantang@mail.tsinghua.edu.cn

刘畅,清华大学建筑学院,博士研究生。2627189484@qq.com

马蒂亚斯 · 德米泽尔,德国波鸿大学(Ruhr-University Bochum),研究员。matthias. demuzere @ ruhr-uni-bochum. de


译者简介:

参考文献:
  • [1] OKE T R, MILLS G, CHRISTEN A, et al. Urban climates[M]. Cambridge: Cambridge University Press, 2017: 3-10.

    [2] 韩贵锋 , 蔡智 , 谢雨丝 , 等 . 城市建设强度与热岛的相关性——以重庆市开州区为例 [J]. 土木建筑与环境工程 , 2016, 38(5): 138-147.

    [3] MANOLI G, FATICHI S, BOU-ZEID E, et.al. Seasonal hysteresis of surface urban heat islands[J]. Proceedings of the national academy of sciences. 2020, 117(13): 7082-7089.

    [4] TAN J, ZHENG Y, TANG X, et.al. The urban heat island and its impact on heat waves and human health in Shanghai[J]. International journal of biometeorology, 2010, 54(1): 75-84.

    [5] ROXON J, ULM F J, PELLENQ R M. Urban heat island impact on state residential energy cost and CO2 emissions in the United States[J]. Urban climate, 2020, 31: 100546.

    [6] SARRAT C, LEMONSU A, MASSON V, et al. Impact of urban heat island on regional atmospheric pollution. [J]. Atmospheric environment, 2006, 40(10): 1743-1758.

    [7] 埃维特·埃雷尔 , 戴维·珀尔穆特 , 特里·威廉森 . 城市小气候 [M]. 北京:中国建筑工业出版社 , 2014: 67-70.

    [8] LAI D, LIU W, GAN T, et al. A review of mitigating strategies to improve the thermal environment and thermal comfort in urban outdoor spaces[J]. Science of the total environment, 2019, 661: 337-353.

    [9] SANTAMOURIS M. Cooling the cities–a review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments[J]. Solar energy, 2014, 103: 682-703.

    [10] GUNAWARDENA K R, WELLS M J, KERSHAW T. Utilising green and bluespace to mitigate urban heat island intensity[J]. Science of the total environment, 2017(584/585): 1040-1055.

    [11] ZHAO Q, SAILOR D J, WENTZ E A. Impact of tree locations and arrangements on outdoor microclimates and human thermal comfort in an urban residential environment[J]. Urban forestry & urban greening, 2018, 32: 81-91.

    [12] BARTON H, GRANT M. Urban planning for healthy cities[J]. Journal of urban health, 2013, 90(1): 129-141.

    [13] CHEN X L, ZHAO H M, LI P X, YIN Z Y. Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes[J]. Remote sensing of environment, 2005, 104(2): 133-146.

    [14] YANG R, ZHANG J, XU Q, et al. Urban-rural spatial transformation process and influences from the perspective of land use: a case study of the Pearl River Delta Region[J]. Habitat International, 2020, 104: 102234.

    [15] LI G, SUN S, FANG C. The varying driving forces of urban expansion in China: insights from a spatial-temporal analysis[J]. Landscape and urban planning, 2018, 174: 63-77.

    [16] ROSENTRETER J, HAGENSIEKER R, WASKE B. Towards large-scale mapping of local climate zones using multitemporal Sentinel 2 data and convolutional neural networks[J]. Remote sensing of environment, 2020, 237(C): 111472.

    [17] DEMUZERE M, HANKEY S, MILLS G, et al. Combining expert and crowd-sourced training data to map urban form and functions for the continental US[J]. Scientific data, 2020, 7(1): 1-13.

    [18] STEWART I D, OKE T R. Local climate zones for urban temperature studies[J]. Bulletin of the American Meteorological Society, 2012, 93(12): 1879-1900.

    [19] PEIRó M N, SáNCHEZ C S, GONZáLEZ F N. Source area definition for local climate zones studies. a systematic review[J]. Building and environment, 2019, 148: 258-285.

    [20] CAI Z, TANG Y, CHEN K, et al. Assessing the heat vulnerability of different local climate zones in the old areas of a Chinese megacity[J]. Sustainability, 2019, 11(7): 2032.

    [21] CAI Z, TANG Y, ZHAN Q. A cooled city? comparing human activity changes on the impact of urban thermal environment before and after city-wide lockdown[J]. Building and environment, 2021, 195: 107729.

    [22] 蔡智 , 韩贵锋 . 山地城市空间形态的地表热环境效应——基于 LCZ 的视角 [J]. 山地学报,2018, 36(4): 617-627.

    [23] VANDAMME S, DEMUZERE M, VERDONCK M L, et al. Revealing Kunming’s (China) historical urban planning policies through local climate zones[J]. Remote sensing, 2019, 11(14): 1731.

    [24] WANG R, CAI M, REN C, et al. Detecting multi-temporal land cover change and land surface temperature in Pearl River Delta by adopting local climate zone[J]. Urban climate, 2019, 28: 100455.

    [25] Chen G, Xie J, Li W, et al. Future“local climate zone”spatial change simulation in Greater Bay Area under the shared socioeconomic pathways and ecological control line[J]. Building and environment, 2021, 203: 108077.

    [26] Zhao C, Weng Q, Hersperger A M. Characterizing the 3-D urban morphology transformation to understand urban-form dynamics: a case study of Austin, Texas, USA[J]. Landscape and urban planning, 2020, 203: 103881.

    [27] KHAMCHIANGTA D, DHAKAL S. Future urban expansion and local climate zone changes in relation to land surface temperature: case of Bangkok Metropolitan Administration, Thailand[J]. Urban climate, 2021, 37: 100835.

    [28] HE X, WANG J, FENG J, et al. Observational and modeling study of interactions between urban heat island and heatwave in Beijing[J]. Journal of cleaner production, 2020, 247(C): 119169.

    [29] SEKERTEKIN A, BONAFONI S. Land surface temperature retrieval from landsat 5, 7, and 8 over rural areas: assessment of different retrieval algorithms and emissivity models and toolbox implementation[J]. Remote sensing, 2020, 12(2): 294.

    [30] 张庭伟 . 1990 年代中国城市空间结构的变化及其动力机制 [J]. 城市规划 , 2001(7): 7-14.

    [31] 耿慧志 , 陶松龄 . 政策影响城市空间形态的综述分析和研究对策——基于提升城市生活质量的思考 [J]. 国际城市规划 , 2013, 28(1): 11-14.


《国际城市规划》编辑部    北京市车公庄西路10号东楼E305/320    100037
邮箱:upi@vip.163.com  电话:010-58323806  传真:010-58323825
京ICP备13011701号-6  京公网安备11010802014223

7767750